Computational Prediction of Antimalarial Potential of Eurycoma longifolia Phytochemicals Targeting Plasmodium falciparum

Authors

  • Wiwara Awisarita Departement of Parasitology, Faculty of Medicine, Ahmad Dahlan University, Yogyakarta, Indonesia
  • Muhammad Farid Universitas Ahmad Dahlan

DOI:

https://doi.org/10.19184/ams.v11i3.53732

Keywords:

Eurycoma longifolia, antimalarial, molecular docking, Plasmodium falciparum

Abstract

Falciparum malaria, caused by Plasmodium falciparum, remains a major global health threat, complicated by the emergence of drug-resistant strains that undermine the efficacy of current artemisinin-based therapies. Eurycoma longifolia Jack (Pasak Bumi), a medicinal plant native to Southeast Asia, has long been used in traditional medicine for treating malaria and infectious diseases. With increasing resistance of Plasmodium falciparum to conventional drugs, the search for novel antimalarial agents is crucial. This study aimed to predicted the antimalarial potential of bioactive compounds from E. longifolia through a computational approach targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). Ten phytochemicals were selected and their 3D structures were prepared using PyRx and Open Babel. Molecular docking simulations were conducted using AutoDock Vina, with artemisinin as a control. Docking validation achieved an RMSD of 0.823 Å, confirming protocol reliability. Among the tested ligands, syringic acid showed the highest binding affinity -6.7 kcal/mol, followed by scopoletin -6.6, and fraxidin -6.4, with key interactions involving residues His185, Val532, and Phe188. Toxicological predictions indicated variability, with 1,1′-biphenyl-3,3′-dicarboxylic acid exhibiting the highest acute toxicity. Despite no compound surpassing the native ligand's binding energy -7.9 kcal/mol, several exhibited promising interactions and favorable safety profiles. This study highlights E. longifolia as a promising source of phytochemicals for antimalarial drug discovery. Further experimental studies and molecular dynamics simulations are recommended to validate these findings and optimize compound efficacy.

Downloads

Download data is not yet available.

References

Abanyie, F., Ng, J., & Tan, K. R. (2023). Post-artesunate Delayed Hemolysis in Patients With Severe Malaria in the United States - April 2019 Through July 2021. Clinical Infectious Diseases, 76(3), E857–E863. https://doi.org/10.1093/cid/ciac719

Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513–W520. https://doi.org/10.1093/nar/gkae303

Bur, R., Nelwan, E. J., Danasasmita, I., Hakim, G. L., Bahri, S., Dewi, F. E. S., Athaya, R. Z., & Nainggolan, L. (2024). Challenges of diagnosing severe malaria with complications in adult patients: a case report. Tropical Diseases, Travel Medicine and Vaccines, 10(1). https://doi.org/10.1186/s40794-023-00216-7

Chandel, V., Tripathi, G., Nayar, S. A., Rathi, B., Kumar, A., & Kumar, D. (2022). In silico identification and validation of triarylchromones as potential inhibitor against main protease of severe acute respiratory syndrome coronavirus 2. Journal of Biomolecular Structure and Dynamics, 40(19), 8850–8865. https://doi.org/10.1080/07391102.2021.1918255

de Freitas, B. S., Fernandes, G. H., Pereira, A. C. E. da S., & Peixoto, H. M. (2024). Artesunate-mefloquine therapy for uncomplicated Plasmodium falciparum malaria: an updated systematic review and meta-analysis of efficacy and safety. Transactions of The Royal Society of Tropical Medicine and Hygiene, 118(2), 84–94. https://doi.org/10.1093/trstmh/trad069

Farag, M. A., Ajayi, A. O., Taleb, M., Wang, K., & Ayoub, I. M. (2023). A Multifaceted Review of Eurycoma longifolia Nutraceutical Bioactives: Production, Extraction, and Analysis in Drugs and Biofluids. In ACS Omega (Vol. 8, Issue 2, pp. 1838–1850). American Chemical Society. https://doi.org/10.1021/acsomega.2c06340

Farid, M., Al Madury, S., Muslim, A. S., & ‘Aini, Z. Q. (2025). Molecular docking study of catharanthus roseus compounds as potential ABL1 inhibitors for leukemia treatment. Acta Chimica Asiana, 8(1), 564–573. https://doi.org/10.29303/aca.v8i1.235

Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. In Molecules (Vol. 20, Issue 7, pp. 13384–13421). MDPI AG. https://doi.org/10.3390/molecules200713384

Fikadu, M., & Ashenafi, E. (2023). Malaria: An Overview. In Infection and Drug Resistance (Vol. 16, pp. 3339–3347). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S405668

Gao, X. Y., Li, X. Y., Zhang, C. Y., & Bai, C. Y. (2024). Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. In Frontiers in Pharmacology (Vol. 15). Frontiers Media SA. https://doi.org/10.3389/fphar.2024.1268464

Habtamu, K., Getachew, H., Abossie, A., Demissew, A., Tsegaye, A., Degefa, T., Wang, X., Lee, M.-C., Zhou, G., Kibret, S., King, C. L., Kazura, J. W., Petros, B., Yewhalaw, D., & Yan, G. (2024). The effect of single low-dose primaquine treatment for uncomplicated Plasmodium falciparum malaria on hemoglobin levels in Ethiopia: a longitudinal cohort study. Malaria Journal, 23(1). https://doi.org/10.21203/rs.3.rs-4095915/v1

Ippolito, M. M., Moser, K. A., Jean-Bertin, &, Kabuya, B., Cunningham, C., & Juliano, J. J. (n.d.). Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. Current Epidemiology Reports, 8. https://doi.org/10.1007/s40471-021-00266-5/Published

Kokkonda, S., El Mazouni, F., White, K. L., White, J., Shackleford, D. M., Lafuente-Monasterio, M. J., Rowland, P., Manjalanagara, K., Joseph, J. T., Garcia-Pérez, A., Fernandez, J., Gamo, F. J., Waterson, D., Burrows, J. N., Palmer, M. J., Charman, S. A., Rathod, P. K., & Phillips, M. A. (2018). Isoxazolopyrimidine-Based Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Antimalarial Activity. ACS Omega, 3(8), 9227–9240. https://doi.org/10.1021/acsomega.8b01573

Latip, M. Q. A., Noor, M. H. M., Ahmad, H., Hassim, H. A., Salleh, A., Bejo, M. H., & Zakaria, A. A. (2022). A Systematic Review on Antimicrobial and Antiparasitic Activity of Eurycoma longifolia Jack (Tongkat Ali). In BioMed Research International (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/4999797

Li, J., Docile, H. J., Fisher, D., Pronyuk, K., & Zhao, L. (2024). Current Status of Malaria Control and Elimination in Africa: Epidemiology, Diagnosis, Treatment, Progress and Challenges. In Journal of Epidemiology and Global Health. Springer Science and Business Media B.V. https://doi.org/10.1007/s44197-024-00228-2

Louvois, M., Simon, L., Pomares, C., Jeandel, P. Y., Demonchy, E., Carles, M., Delaunay, P., & Courjon, J. (2022). Case Report: Autoimmune Hemolysis Anemia After Dihydroartemisinin and Piperaquine for Uncomplicated Plasmodium falciparum Malaria. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.756050

Low, B.-S., Teh, C.-H., Yuen, K.-H., & Chan, K.-L. (2011). Physico-chemical effects of the major quassinoids in a standardized Eurycoma longifolia extract (Fr 2) on the bioavailability and pharmacokinetic properties, and their implications for oral antimalarial activity. Nat Prod Commun, 3, 337–341.

Mamede, L., Ledoux, A., Jansen, O., & Frédérich, M. (2020). Natural Phenolic Compounds and Derivatives as Potential Antimalarial Agents. In Planta Medica (Vol. 86, Issue 9, pp. 585–618). Georg Thieme Verlag. https://doi.org/10.1055/a-1148-9000

Ramírez, A. M., Akindele, A. A., González Mora, V., García, L., Lara, N., de la Torre-Capitán Matías, E., Molina de la Fuente, I., Nassar, S. A., Ta-Tang, T. H., Benito, A., & Berzosa, P. (2025). Mutational profile of pfdhfr, pfdhps, pfmdr1, pfcrt and pfk13 genes of P. falciparum associated with resistance to different antimalarial drugs in Osun state, southwestern Nigeria. Tropical Medicine and Health, 53(1). https://doi.org/10.1186/s41182-025-00732-6

Mutschlechner, B., Schwaiger, S., Tran, T. V. A., & Stuppner, H. (2018). Development of a selective HPLC-DAD/ELSD method for the qualitative and quantitative assessment of commercially available Eurycoma longifolia products and plant extracts. Fitoterapia, 124, 188–192. https://doi.org/10.1016/j.fitote.2017.11.015

Naveenkumar, S., Kamaraj, C., Kumarasamy, V., Jayaseelan, C., Prem, P., Boomija, R. V., Suseem, S. R., Subramaniyan, V., Barasarathi, J., & Wong, L. S. (2025). Isolation and validation of antimalarial compounds from Phyllanthus emblica leaves for new antimalarial drug development. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-99998-3

Negru, D. C., Bungau, S. G., Radu, A., Tit, D. M., Radu, A. F., Nistor-Cseppento, D. C., & Negru, P. A. (2025). Evaluation of the Alkaloids as Inhibitors of Human Acetylcholinesterase by Molecular Docking and ADME Prediction. In Vivo, 39(1), 236–250. https://doi.org/10.21873/invivo.13822

Sholikhah, E. N., Agus Wijayanti, M., Hayu Nurani, L., Farmakologi, D., Kedokteran, F., Masyarakat dan Keperawatan UGM, K., Parasitologi, D., Farmasi, F., & Ahmad Dahlan, U. (2018). Antiplasmodial Activity and Cytotoxicity of Isolates of Pasak Bumi (Eurycoma longifolia Jack) Root. Majalah Farmaseutik, 14(2), 54–62.

Omagha, R., Idowu, E. T., Alimba, C. G., Otubanjo, O. A., Oyibo, W. A., & Agbaje, E. O. (2022). In vivo antiplasmodial activities and acute toxicity assessment of two plant cocktail extracts commonly used among Southwestern Nigerians. Journal of Parasitic Diseases, 46(2), 343–353. https://doi.org/10.1007/s12639-021-01450-6

Owoloye, A., Enejoh, O. A., Akanbi, O. M., & Bankole, O. M. (2020). Molecular docking analysis of Plasmodium falciparum dihydroorotate dehydrogenase towards the design of effective inhibitors. https://doi.org/10.6026/97320630016672

Rehman, S. U., Choe, K., & Yoo, H. H. (2016). Review on a traditional herbal medicine, eurycoma longifolia Jack (Tongkat Ali): Its traditional uses, chemistry, evidence-based pharmacology and toxicology. In Molecules (Vol. 21, Issue 3). MDPI AG. https://doi.org/10.3390/molecules21030331

Ridzuan, M., Sow, A., Rain, N., Ilham, M., & Zakiah, I. (2007). Eurycoma longifolia extract-artemisinin combination: parasitemia suppression of Plasmodium yoelii-infected mice. In Tropical Biomedicine (Vol. 24, Issue 1).

Serag, A., Zayed, A., Mediani, A., & Farag, M. A. (2023). Integrated comparative metabolite profiling via NMR and GC–MS analyses for tongkat ali (Eurycoma longifolia) fingerprinting and quality control analysis. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28551-x

Sitanggang, B. R., Prijanti, A. R., & Astuty, H. (2018). The Role of Pasak Bumi ( Eurycoma longifolia Jack) Extract as an Antimalarial Agent Through the Mechanism of Antioxidant Specific Activity (Superoxide Dismutase, SOD and Catalase, CAT) in Plasmodium berghei -Infected Mice . Advanced Science Letters, 24(9), 6976–6979. https://doi.org/10.1166/asl.2018.12900

Thellier, M., Gemegah, A. A. J., & Tantaoui, I. (2024). Global Fight against Malaria: Goals and Achievements 1900–2022. In Journal of Clinical Medicine (Vol. 13, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jcm13195680

Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch-Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Maradona, M. P., … Knutsen, H. K. (2021). Safety of Eurycoma longifolia (Tongkat Ali) root extract as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(12). https://doi.org/10.2903/j.efsa.2021.6937

Venkatesan, P. (2024). The 2023 WHO World malaria report. The Lancet Microbe, 5(3), e214. https://doi.org/10.1016/s2666-5247(24)00016-8

Weiss, D. J., Dzianach, P. A., Saddler, A., Lubinda, J., Browne, A., McPhail, M., Rumisha, S. F., Sanna, F., Gelaw, Y., Kiss, J. B., Hafsia, S., Jayaseelen, R., Baggen, H. S., Amratia, P., Bertozzi-Villa, A., Nesbit, O., Whisnant, J., Battle, K. E., Nguyen, M., … Gething, P. W. (2025). Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum and Plasmodium vivax malaria, 2000–22: a spatial and temporal modelling study. The Lancet, 405(10483), 979–990. https://doi.org/10.1016/S0140-6736(25)00038-8

Wernsdorfer, W. H., Ismail, S., Chan, K. L., Congpuong, K., & Wernsdorfer, G. (2009). Activity of Eurycoma longifolia root extract against Plasmodium falciparum in vitro. Wien Klin Wochenschr, 3(23).

Wijayanti, M. A., & Sholikhah, E. N. (2020). Antiplasmodial Activity And Mechanisms Of Action Of Eurycoma Longifolia Jack Root Isolated Compounds. SoutheaSt ASian J Trop Med Public Health, 51(2), 163.

Downloads

Published

2025-10-31

Issue

Section

Original Research Articles